Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 946522, 2022.
Article in English | MEDLINE | ID: covidwho-2022727

ABSTRACT

Numerous publications have underlined the link between complement C5a and the clinical course of COVID-19. We previously reported that levels of C5a remain high in the group of severely ill patients up to 90 days after hospital discharge. We have now evaluated which complement pathway fuels the elevated levels of C5a during hospitalization and follow-up. The alternative pathway (AP) activation marker C3bBbP and the soluble fraction of C4d, a footprint of the classical/lectin (CP/LP) pathway, were assessed by immunoenzymatic assay in a total of 188 serial samples from 49 patients infected with SARS-CoV-2. Unlike C5a, neither C3bBbP nor C4d readouts rose proportionally to the severity of the disease. Detailed correlation analyses in hospitalization and follow-up samples collected from patients of different disease severity showed significant positive correlations of AP and CP/LP markers with C5a in certain groups, except for the follow-up samples of the patients who suffered from highly severe COVID-19 and presented the highest C5a readouts. In conclusion, there is not a clear link between persistently high levels of C5a after hospital discharge and markers of upstream complement activation, suggesting the existence of a non-canonical source of C5a in patients with a severe course of COVID-19.


Subject(s)
COVID-19 , Complement Activation , Complement C3b , Complement C4b , Complement C5a , Complement Factor B , Peptide Fragments , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Complement C5a/analysis , Complement C5a/immunology , Complement Factor B/immunology , Complement System Proteins/immunology , Humans , Peptide Fragments/immunology , SARS-CoV-2
2.
Front Immunol ; 12: 767376, 2021.
Article in English | MEDLINE | ID: covidwho-1556073

ABSTRACT

Evidence supports a role of complement anaphylatoxin C5a in the pathophysiology of COVID-19. However, information about the evolution and impact of C5a levels after hospital discharge is lacking. We analyzed the association between circulating C5a levels and the clinical evolution of hospitalized patients infected with SARS-CoV-2. Serum C5a levels were determined in 32 hospitalized and 17 non-hospitalized patients from Clinica Universidad de Navarra. One hundred and eighty eight serial samples were collected during the hospitalization stay and up to three months during the follow-up. Median C5a levels were 27.71 ng/ml (25th to 75th percentile: 19.35-34.96) for samples collected during hospitalization, versus 16.76 ng/ml (12.90-25.08) for samples collected during the follow-up (p<0.001). There was a negative correlation between serum C5a levels and the number of days from symptom onset (p<0.001). C5a levels also correlated with a previously validated clinical risk score (p<0.001), and was associated with the severity of the disease (p<0.001). An overall reduction of C5a levels was observed after hospital discharge. However, elevated C5a levels persisted in those patients with high COVID-19 severity (i.e. those with a longest stay in the hospital), even after months from hospital discharge (p=0.020). Moreover, high C5a levels appeared to be associated with the presence of long-term respiratory symptoms (p=0.004). In conclusion, serum C5a levels remain high in severe cases of COVID-19, and are associated with the presence of respiratory symptoms after hospital discharge. These results may suggest a role for C5a in the long-term effects of COVID-19 infection.


Subject(s)
COVID-19/blood , Complement C5a/metabolism , Patient Discharge/statistics & numerical data , Aged , COVID-19/complications , COVID-19/immunology , Female , Follow-Up Studies , Hospitalization , Humans , Immunity, Innate , Male , Middle Aged , Respiration Disorders/blood , Respiration Disorders/etiology , Respiration Disorders/immunology , Risk Factors , SARS-CoV-2 , Severity of Illness Index
3.
Front Immunol ; 12: 659018, 2021.
Article in English | MEDLINE | ID: covidwho-1236672

ABSTRACT

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adaptive Immunity , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , COVID-19/pathology , Female , Humans , Immunity, Innate , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/pathology , Male , Middle Aged , Monocytes/immunology , Prognosis , SARS-CoV-2 , Survival Analysis , Young Adult
5.
Trials ; 21(1): 498, 2020 Jun 08.
Article in English | MEDLINE | ID: covidwho-591348

ABSTRACT

OBJECTIVES: The primary objective is to determine the efficacy of a single dose of ivermectin, administered to low risk, non-severe COVID-19 patients in the first 48 hours after symptom onset to reduce the proportion of patients with detectable SARS-CoV-2 RNA by Polymerase Chain Reaction (PCR) test from nasopharyngeal swab at day 7 post-treatment. The secondary objectives are: 1.To assess the efficacy of ivermectin to reduce the SARS-CoV-2 viral load in the nasopharyngeal swab at day 7 post treatment.2.To assess the efficacy of ivermectin to improve symptom progression in treated patients.3.To assess the proportion of seroconversions in treated patients at day 21.4.To assess the safety of ivermectin at the proposed dose.5.To determine the magnitude of immune response against SARS-CoV-2.6.To assess the early kinetics of immunity against SARS-CoV-2. TRIAL DESIGN: SAINT is a single centre, double-blind, randomized, placebo-controlled, superiority trial with two parallel arms. Participants will be randomized to receive a single dose of 400 µg/kg ivermectin or placebo, and the number of patients in the treatment and placebo groups will be the same (1:1 ratio). PARTICIPANTS: The population for the study will be patients with a positive nasopharyngeal swab PCR test for SARS-CoV-2, with non-severe COVID-19 disease, and no risk factors for progression to severity. Vulnerable populations such as pregnant women, minors (i.e.; under 18 years old), and seniors (i.e.; over 60 years old) will be excluded. Inclusion criteria 1. Patients diagnosed with COVID-19 in the emergency room of the Clínica Universidad de Navarra (CUN) with a positive SARS-CoV-2 PCR. 2. Residents of the Pamplona basin ("Cuenca de Pamplona"). 3. The patient must be between the ages of 18 and 60 years of age. 4. Negative pregnancy test for women of child bearing age*. 5. The patient or his/her representative, has given informed consent to participate in the study. 6. The patient should, in the PI's opinion, be able to comply with all the requirements of the clinical trial (including home follow up during isolation). Exclusion criteria 1. Known history of ivermectin allergy. 2. Hypersensitivity to any component of ivermectin. 3. COVID-19 pneumonia. Diagnosed by the attending physician.Identified in a chest X-ray. 4. Fever or cough present for more than 48 hours. 5. Positive IgG against SARS-CoV-2 by rapid diagnostic test. 6. Age under 18 or over 60 years. 7. The following co-morbidities (or any other disease that might interfere with the study in the eyes of the PI): Immunosuppression.Chronic Obstructive Pulmonary Disease.Diabetes.Hypertension.Obesity.Acute or chronic renal failure.History of coronary disease.History of cerebrovascular disease.Current neoplasm. 8. Recent travel history to countries that are endemic for Loa loa (Angola, Cameroon, Central African Republic, Chad, Democratic Republic of Congo, Ethiopia, Equatorial, Guinea, Gabon, Republic of Congo, Nigeria and Sudan). 9. Current use of CYP 3A4 or P-gp inhibitor drugs such as quinidine, amiodarone, diltiazem, spironolactone, verapamil, clarithromycin, erythromycin, itraconazole, ketoconazole, cyclosporine, tacrolimus, indinavir, ritonavir or cobicistat. Use of critical CYP3A4 substrate drugs such as warfarin. *Women of child bearing age may participate if they use a safe contraceptive method for the entire period of the study and at least one month afterwards. A woman is considered to not have childbearing capacity if she is post-menopausal (minimum of 2 years without menstruation) or has undergone surgical sterilization (at least one month before the study). The trial is currently planned at a single center, Clínica Universidad de Navarra, in Navarra (Spain), and the immunology samples will be analyzed at the Barcelona Institute for Global Health (ISGlobal), in Barcelona (Spain). Participants will be recruited by the investigators at the emergency room and/or COVID-19 area of the CUN. They will remain in the trial for a period of 28 days at their homes since they will be patients with mild disease. In the interest of public health and to contain transmission of infection, follow-up visits will be conducted in the participant's home by a clinical trial team comprising nursing and medical members. Home visits will assess clinical and laboratory parameters of the patients. INTERVENTION AND COMPARATOR: Ivermectin will be administered to the treatment group at a 400µg/Kg dose (included in the EU approved label of Stromectol and Scabioral). The control group will receive placebo. There is no current data on the efficacy of ivermectin against the virus in vivo, therefore the use of placebo in the control group is ethically justified. MAIN OUTCOMES: Primary Proportion of patients with a positive SARS-CoV-2 PCR from a nasopharyngeal swab at day 7 post-treatment. Secondary 1.Mean viral load as determined by PCR cycle threshold (Ct) at baseline and on days 4, 7, 14, and 21.2.Proportion of patients with fever and cough at days 4, 7, 14, and 21 as well as proportion of patients progressing to severe disease or death during the trial.3.Proportion of patients with seroconversion at day 21.4.Proportion of drug-related adverse events during the trial.5.Median levels of IgG, IgM, IgA measured by Luminex, frequencies of innate and SARS-CoV-2-specific T cells assessed by flow cytometry, median levels of inflammatory and activation markers measured by Luminex and transcriptomics.6.Median kinetics of IgG, IgM, IgA levels during the trial, until day 28. RANDOMISATION: Eligible patients will be allocated in a 1:1 ratio using a randomization list generated by the trial statistician using blocks of four to ensure balance between the groups. A study identification code with the format "SAINT-##" (##: from 01 to 24) will be generated using a sequence of random numbers so that the randomization number does not match the subject identifier. The sequence and code used will be kept in an encrypted file accessible only to the trial statistician. A physical copy will be kept in a locked cabinet at the CUN, accessible only to the person administering the drug who will not enrol or attend to patient care. A separate set of 24 envelopes for emergency unblinding will be kept in the study file. BLINDING (MASKING): The clinical trial team and the patients will be blinded. The placebo will not be visibly identical, but it will be administered by staff not involved in the clinical care or participant follow up. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is 24 patients: 12 participants will be randomised to the treatment group and 12 participants to the control group. TRIAL STATUS: Current protocol version: 1.0 dated 16 of April 2020. Recruitment is envisioned to begin by May 14th and end by June 14th. TRIAL REGISTRATION: EudraCT number: 2020-001474-29, registered April 1st. Clinicaltrials.gov: submitted, pending number FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Ivermectin/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adolescent , Adult , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Double-Blind Method , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pilot Projects , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Time Factors , Viral Load , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL